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The reflection of obliquely incident tsunamis 
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When a tsunami is incident on a plane shelf, the waveform and amplitude of the 
reflected wave differ significantly from those of the incident wave, and, when the shelf 
has the extremely irregular character of real continental shelves, the contrast between 
the two amplitudes is even greater. Here we quantify these statements and we also 
give an account of the manner in which the run-up depends on the obliquity and on 
other parameters characterizing the incident wave. 

1. Introduction 
When a tsunami impinges obliquely on a large land mass with an irregular 

boundary the reflected wave will differ in waveform and in amplitude from the 
incident wave. In  discussions of such matters, the dissipation associated with the 
reflection dynamics is frequently cited as the cause of the discrepancy between 
incident and reflected amplitudes. For alarge tsunami with itsvery large characterizing 
lengthscales, however, it  seem unlikely that frictional dissipation can account for 
much attenuation, and we present here analyses which suggest that the distorted and 
attenuated reflection is the result of both the ‘phase mixing’ which is intrinsic to  
frictionless reflection from an irregular shelf and to the more orderly distortion 
associated with the frictionless reflection from a plane shelf. The latter, for normal 
incidence, is implicit in earlier studies, but we are not aware that, as yet, the 
implications have been presented explicitly. 

When a large tsunami travels a large distance (say M )  across the Pacific, dispersion 
can play an important role in the evolution of the wave shape and amplitude but 
only for waves whose lateral scale is less than 50 miles or so and only over travel 
distances L of a few thousands of miles (Carrier 1971). The travel distance associated 
with the reflection process is much smaller than M ,  and, accordingly, one can analyse 
the phenomenon of interest here with a non-dispersive formulation of the gravity-wave 
dynamics. 

Accordingly, we will adopt the classical linear shallow-water theory and treat three 
(families of) problems with it. I n  particular, we will find: 

(1)  the reflection of a given incident wave from a plane shelf; 
(2) the ensemble average of the further distortion of that  reflected wave by a 

stochastically characterized irregularity in the shelf boundary ; 
(3) the deterministic modification of an outcoming wave by a deterministic 

undulation in the shelf boundary; this third result will provide the basis for an 
argument that the stochastic result can be applied to each realization of the 
wave-with-ragged-boundary problem a t  sufficiently great offshore distances. 
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FIGURE 1. Geometry of wave problem. In  the dimensionless coordinates of our analysis L = 1 and 
a = 1 ; h is the depth of the shelf and h, is the uniform deep-water depth. 

2. Reflection from a plane shelf 
The conservation laws in the linear shallow-water approximation lead to 

where h(x) is the water depth, x is distance seaward from the zero-depth line and l;r 

is the wave height. We confine our attention to waves that depend on y (distance 
parallel to the shore) and on t only in the combination 

where 0 defines the obliquity with which the incident wave approaches the shelf (for 
normal incidence 0 = an). The geometry is depicted in figure 1 .  In particular, the 
depth h(z)  is given by 

ax (x  < L) ,  
U L  (z 2 A). 

h(z )  = 

When x and s are measured in units of shelf width, (2.1) becomes 

q5zz.-tan20q5s, = 0 ( x  > l ) ,  (2 .2 )  

(~?tz )z+(x-Y2) l ; rss  = 0 (x < (2.3) 

where q5 is just the name that we give 7 in the deep water (i.e. in x > 1) and y = sec 8. 
We seek solutio~s of (2 .2)  and (2.3) such that 7 includes a prescribed incident wave 
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and a reflected wave which is to be found. At the shelf edge we require that 

541,s) = 7(1,4, (2.4) 

$ Z ( 1 >  8) = YZ(1,S). (2.5) 
The foregoing, including the prescription of &,,, suffice to determine g5 and 7 
uniquely. 

When we invoke the use of the Fourier transform 
00 

$(x, 6) = ( e-i@ #(x, s) ds, 
J -00 

(2.2) and (2.3) become 
$zz+[2tan20$ = o (x > I ) ,  

(xqz) , - [2(2-y2)? j  = 0 (x < 1 ) .  (2.7) 

1 (2.8) 

$inc = A(h)l (2.9) 

The solution of (2.6) can be written in the form, 
$ = x(6) e-ic(z-l) tan 0 + B(g) ei[(s-l) tan B 

and the first term is the transform of the incident wave. More precisely, the incident 
wave is 

where 

The most general solution of (2.7) that  is bounded at x = 0 is 

h = s-(x-1)tanO. 

q(x,  E )  = C(E) e-ES MMl- r“), 1,264. (2.10) 

Here M is the confluent hypergeometric function (Abramowitz & Stegun 1965) 
defined by 

O3 a,zn 
M ( a , l , z )  = I: ~ 

n-0 (n!l2 

(2.11) 

(2.12) 

where 
an = a(a+ 1) ... ( a + n -  1) .  

It is also true (with p = 2E;x and a = &(l -r2()) that 

?j’(x) = c ( E ) 6 e - q 2 M p ( a ,  1,P)--1M(a, l,P)I> 

which may be written (Abramowitz & Stegun 1965) 

q’(x) = &‘(6)e-@[M(a, I , P ) - - ( ~  +Ey2)M(a,2,p)l. 
_ _  

It follows from (2.4), (2.5), (2.8), (2.10) and (2.12) that  B / A  (the reflection 

(2.13) 

(2.14) 

The information needed to invert numerically the Fourier transforms q(x,  6) and 
B([)  is readily available (Abramowitz & Stegun 1965 and Appendix A) and we have 
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FIGURE 2.  Wave profiles on the plane shelf with w = 0.0625, B = in. 

carried out the process for incident waves of the formt 

h2 cos2 W2 *) A ( A )  = exp (- 
at x = 0,  a, 1 ,  for each of the cases w = 0.0625,0.125, 0.25 and 0.5 and 0 = an, in, in. 

The profiles of 7 us. y plotted in figure 2-6 illustrate the major features of the 
computed results. The figures correspond to the time such that the crest of the 
incident wave passes through x = 1 ,  y = 0. Note that the reflected wave (as well as 
the run-up y(0, s)) has, in each case, a dipole character (despite the one-signed incident 
wave), and that, for some parameters, there are artifacts of multiple reflection (see 
figure 6 at y x - 5 ) .  

Several persistent trends are evident in the graphs. In figure 2 an additional profile 
at  x = + is included to show the general character of the waveform distribution across 

t Analytically, i t  is very convenient to use a Gaussian as the generic waveform. It is clear that 
any smooth wave profile can be approximated by a linear combination of such waves, and its 
one-signed character is an especially useful reference point against which to compare the reflected 
waveform. The same building block played an equally useful role in the tsunami generation and 
propagation analysis (Carrier 1971), but for rather different mathematical reasons. In  both 
instances, however, the underlying justification rests in each case on the fact that only the longer 
wavelength contributions to the waves are particularly important. 
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FIGURE 4. Wave profiles on the plane shelf with w = 0.25, 8 = Qn. 

the shelf - this example being representative of all the computed results. Also, the 
maximum run-up qm(O,s) at the shore occurs as normal incidence is approached 
(compare figures 2 and 3) and the value of qm(O, s) when 8 = in is shown in the figures 
by a dotted line. Furthermore, when the width of the incident pulse is decreased, 
qm(O, s) is increased and the dipole character of the reflected wave is enhanced. Note 
that, although a plot of 7vs.y at fixed t would be meaningless for 8 = inilr, the plot 
of q us. y for 8 = 3n is an excellent approximation to a plot of q vs. t for 4 = in. 
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FIGURE 6. Wave profiles on the plane shelf with w = 0.5, 6' = in. 

It is of interest to note that the results are rather different when one adopts for 
the shelf geometry a constant depth that is smaller than ha in 0 < x < 1 joined 
discontinuously to the deep water (ha) at x = 1 .  A concise account of that problem 
is given in Appendix B. Note that there is no shelf level for which the results provide 
a reasonably good approximation to those for the sloping shelf. 



Rejlection of obliquely incident tsunamis 

X 

153 

’ Level lines of sent wave 

I / /  

FIGURE 7. Schematic diagram of the ragged boundary given by x = f(y), two constant-height 
profiles of the incident wave (solid lines) and an artistic rendition of the analogues characteristic 
of the reflected wave. 

3. The effect of a rugged boundary 
Any realistic deterministic description of a continental shelf, even if that  description 

were available, would lead to a problem formulation so complex that the effort 
required to  solve i t  could not be justified. Since we don’t have such descriptions 
except in very coarse scale and since we could not handle them anyway, we adopt 
the following attitude (set of hypotheses). 

( 1 )  The fact that  the shelf is sloping implies a reflected-wave profile, at each y, much 
like that derived in 92. 

(2) The undulations in coastline have a further impact which can be modelled by 
a rule that says: the wave which would have arrived a t  x = 1 after reflection by a 
plane shelf actually does arrive there but with a time delay (or lead) ‘implied’ by 
the extent, locally, of the ragged boundary indentation (or projection) beyond the 
nominal coastline. 

(3) The characterization of the undulation will be given stochastically in terms, 
not of the coastline geometry, but rather of its implied time-delay distribution. 

Thus, in the deep water, we have 

vxx+vuyy-v, = 0, 13.1) 

where v, this time, is the seaward (x) component of particle velocity of the reflected 
wave only. The geometry is shown in figure 7 .  

The boundary condition states that 

where B(y-7sec8) is the wave that would have reflected from a plane beach, p is 
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cot 0 andf(y) is a random variable which takes on the values of the time delay (lead) 
which, at normal incidence, would be implied by the indentation (projection) of the 
coastline a t  y. The probability density function for f is taken to  be 

The solution of (3.1) in x > 1,  subject both to the boundary condition (3.2) and to  
the Sommerfeld radiation condition, can be written 

r roo 
v(x,y,7) = J B[~’sec8-y’-2/3f(y’)sec8]K(7-~’,x,y-y’)d~’dy’, (3.4) 

-03 

where K is that  Green function about which we only need to  know that 

S ~ ( T ’  sec 0-y’) K(7-7’, x, y- y’) d7’ dy’ = H(7 sec 0- y -,f?x). (3.5) 

I n  view of the crudeness of the model, no significant accuracy is lost when we 
approximate B as a sum of Gaussian functions of the form 

B,(y) = a , e - ~ z ~ z w ~ ,  

and our objective is met when we carry out the analysis for one such B,, i.e. 

(3.6) B = e-V2/2Wz. 

For this choice of B, the ensemble average of v is given by 

I> [7’ sec 0 - y’ - 2p see 0f(y’)12 
2 w2 

d~’dy’K(7-7’, x, y-y’) 
-oo 

OD 

- m  P 

1 (T’ se;8 - 9’) , 
= SJ d7’ dy’ K(7-7’, 2, y- y’) - B 

v-’- --- 

The final factor in (3.7) was obtained by evaluating 

[7’ see 8 - y’ - 2bf(y’) sec 81 
(““P[ - 2 w2 

Thus, using the previously cited property (3.5) of the Green function, (3.7) implies 
that 

\ - ‘ - “ I  

That is to say, the ensemble average of the family of reflected waves duplicates the 
wave that would have reflected from the plane shelf except that  the horizontal scale 
of that  reflection has been broadened by the factor p and the amplitude has been 
weakened by the same factor. 

Unfortunately, the interpretation of this result varies according to information 
about the geometries f(y) which is not contained in any of the foregoing. For example, 
iff(y’) were completely uncorrelated tof(y”) for all y“ =!= y’, the excitation at x = 1 is 
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equivalent to one in which different partial masses of the water adjacent to x = 1 
are acted on by ‘pistons’ according to differing values off all in accord with the 
distribution (3.3). Under these circumstances, in each realization of the phenomenon, 
the radiated wave has the form given in (3.10). Conversely, if the autocorrelation of 
f is so far-reaching that f(y’) = f(y”) for all y’, y”, then each reflected wave is merely 

(3.11) 
given by v$$~ = B[7sec8-y-2/3(x-fn)sec8], 

where f n  is the value off associated with the nth realization. Thus, in this case, the 
description (3.10) is an artifact of a set of waves having identical shapes and amplitudes 
appropriate to the plane shelf but with uncertainties in position which lead to (3.10). 

In order to show that the appropriate interpretation is that each realization is 
broadened in accord with (3.10), we will investigate in 54 the waves associated with 
a particular family of deterministic rigged coastlines. 

4. A useful deterministic coastline 
One particular, simply described, discretized family of coastline realizations f(y) 

is that in which the time delay f on one set of intervals R(l) has the value fl, whereas, 
on the complementary set of intervals R@),  f takes on the value f 2  = - fi. 

The boundary-value problem that accompanies this special case is 

where v must represent an outgoing wave. The absence of see8 in the argument of 
B indicates that, for this particular problem, we find it convenient and adequate to 
confine our attention to waves whose incidence is normal to the coastline. 

With little further loss in generality we also confine our attention to cases in which 
the intervals in both R(l) and R@) have length L,  for which the boundary condition 
becomes 

v( l , y ,7 )  = B [ ~ - f n ( ~ ) l  

(4.3) = e-(7-f1)’/2W2 Fl(y) + e-(T+fi)2/2w* F ( 
2 Y), 

where 

(4.4) 

It is clear that the contribution of the constant terms in this boundary condition 
imply a result that is the direct counterpart of the ensemble average of (3.10),? and 
the remaining question is: at what offshore distance x (if any) does the contribution 
of the reflection from one or another of the trigonometric terms in (4.4) die off to 
negligible values ? It is rather clear that the n = 1 case will decay most slowly, so we 
look at f4.1) subiect to 

v(1,  y,7) = sin-B(~). (4.5) XY 
L 

Equation (4.1) becomes, with v(x, y, 7 )  = sin (ny/L)  p ( x ,  7 ) ,  

t It is even clearer when one imagines a boundary condition with 17 sets of intervals with 17 
values off. 

6 FLY 133 
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and (4.5) becomes 

Using the Fourier transform (in t )  again, we obtain 

(4.7) 

p ( 1 , t )  = B(E) = e-iWzp. with 

The solution of this problem can be written 

(4.10) 

and the inversion is not elementary. However, we can ferret out the characteristic 
features of p in the following straightforward way. 

Suppose first that L is less than or equal to W and note that ( a )  most of the energy 
(or momentum, ...) is associated with wavenumbers 6 which lie in 0 < 6 < 2/L,  and 
( b )  p decays with x a t  least as rapidly as e-4s(x-1)’L for that range of 6.t That is to 
say: by the time the reflected pulse has travelled seaward a few distances L most of 
the energy in the wave has disappeared via ‘destructive interference’, and only the 
small-wavelength contribution remain?. Within the framework of the foregoing 
theory, these spectral components of the wave could still imply some strong gradients 
in p, but, in fact, the waves in this spectral range are the ones that disperse strongly 
in the more properly formulated problem, and, if the dispersive theory were called 
upon, no significant consequences of these wavy inputs would remain. Conversely, 
of course, if the coast has a ragged boundary in small scale (i.e. O ( W ) )  superposed 
on an undulation at a scale L2 that is considerably larger than W the consequences 
of that geometry will include a wavy locus with lateral scale L2 for the reflected wave 
we have just described. 

Accordingly, one can expect the reflection from a real shelf to have a waviness in 
location whose details we don’t care about but which are strongly correlated with 
the large-scale undulations in coastline position. One can also expect that reflection 
to have a profile which, except for an amplitude diminution and a broadening p,  is 
that given by the analysis of $ 2  as depicted in figures 2-6. The diminution and 
broadening which will have occurred in only a few seaward distances W will be 
characterized b y p  ((3.8) and (3.10)), with I chosen to represent the mean delay time 
associated with the stochastic irregularities whose scales s (in y) lie in 0 < 5 < O( W ) .  

And, finally, since W < 0.2 for real tsunamis, the reflected tsunami will have a much 
greater breadth and less than half the amplitude of the incident wave. 

Appendix A 
The explicit form of the inversion integral for the shelf solution ~ ( x ,  5) is 

, X 

t A more formal verification of this exponential decay for the long wavelengths is given by 
Watson’s lemma, which yields the estimate x e-ff(z-l)lL, i.e. (4.10) with 5 = 0. 
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The integral is cast in real form by first making repeated use of Kummer's relation 
(Abramowitz & Stegun 1965) 

M ( % y , z )  = eZM(y-a,y, - z ) ,  

and known recurrence formulas for the M-function, to establish that 

With these symmetry relations, (A 1) can be written 

q(x,y) = $J:d(e-."2-1)ih(a, 1,2cx)exp - 
cos 8 

KZ 

(A 2) 
where A? = e-fM(a, 1,2[), $ = e-", and a value oft  has been chosen in (A 2) so that 
the crest of the incident wave passes through x = 1, y = 0. The M- and @-functions 
are evaluated (in 6 )  by using either the series representation together with recurrence 
relations on M ,  or finite-domain integral representations. Though for large 5 the 
intergrand is a rather rapidly oscillating (and decaying) function, the standard 
quadrature routines provide sufficient accuracy. 

One feature of the solution, which served as a mild check of the numerics, follows 
from the expressions (2.8), (2.13) and the Fourier-transform relation 

d o )  = j+" dydy) .  
-aJ 

By evaluating (2.8) with f = 0, it follows immediately that the integral in y, for some 
x, > 1, of the incident and reflected wave is equal to 2A(O), or 2wxflcos8. Though 
somewhat less easily established, i t  is also true that 

The numerical values generated by (A 2) for x = 0, &, 1 were integrated (in y) to ensure 
that this condition was satisfied with acceptable accuracy. 

Appendix B 
The formalism outlined in $2 may be used to  derive explicit expressions for the 

waveform when the underlying geometry consists of a constant depth p2h, (p2 < 1) 
in 0 < x < 1 and deep water (h,) in x > 1. No change is required in the &) solution 
(2.8), and the appropriate counterpart to (2.7) is given by 

fzz(x, 5) - (r5)2 ifk, 5) = 0, 

(1 -p2cos28)~ 
pcose , 

r =  

6-2 
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FIQURE 8. Schematic diagram of the level line distribution for the step-shelf geometry. 

Imposing the boundary condition ?jz(O, 6) = 0 at the 'coastline', together with the 
matching criteria 

?j(1,5) = $(1& 

P2?jZ(1>E) = $ Z ( L E )  

a t  the edge of the shelf, uniquely determines the reflection coefficient, now given by 

where 

B(6) - cos (6) + iQ sin (cr) 

A(() 
-- 

cos ( ( r )  - i& sin (cr)  ' 

p( 1 -p2 cos2 B) t  
Q =  sin0 

_ -  
can be inverted explicitly when B / A  is written as a power series in eitr. The reflection 
coefficient may be cast as a sum: 

where S 3 (1  - Q)/( 1 + &) is the reflection coefficient associated with normal incidence 
on a step change in depth. The 'effective ' depth difference 1 - Q2, however, is now 
determined by the height p2 of the step and the obliquity B of the incident wave. 
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Inverting the transforms and 6 using (B 4) provides infinite-series expressions 
for q(x, s) and $(x, s). With the same incident waveform A(h) as before, the solutions 

where G = (2-2) tanO+s, represent a collection of plane Gaussian pulses whose 
(maximum) level lines combine in the manner shown in figure 8. 

The shelf solution ~ ( z ,  s) was evaluated numerically using the incident wave shapes 
described in $2, and figure 9, where p2 = 0.5, w = 0.25 and 8 = tlr, is typical among 
the results that emerged. No shelf-height and incident-angle combination provided 
either the degree of amplification or the dipole character found to prevail in the 
solutions for the sloping shelf. 
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